Direkt zum Hauptbereich

The Meta-Model of the UML


Modeling languages, like the Unified Modeling Language (UML), are designed according to a schema called meta-level architecture (aka meta-data architecture). While the term may sound mystik, meta-level architectures are actually not that difficult to understand.

Let us have a closer look at the architecture of meta-levels on an informal level. We will start at the top left, see the figure. To make the discussion concrete, we refer to conceptions as you know them from modeling with classes and objects. The abbreviation CD stands for Class Diagram. A class diagram consists of classes, associations, inheritance and so on. These conceptions, the conceptions you are allowed to use for a CD are defined by CM, the Class Model, as we call it. The CM is a specification of conceptions, of which a concrete CD is an instance of. That's why there is an arrow labeled with "instanceOf" between CD and CM. The Class Meta-Model (CMM) specifies the language constructs available for use on CM. In other words, the CM is one concrete specification of a modeling language, whose specification concepts are defined by CMM. In that sense, CM is an instance of CMM. All this is pretty straight forward and not in conflict with the common understanding of meta-level architectures.

However, and this is often overlooked, the same argumentation holds on the row below. An Object Diagram (OD) consists of objects, values, references etc. These conceptions are defined by the Object Model (OM). The Object Meta-Model (OMM) specifies the language constructs available for use on OM. Again, this is pretty straight and clear. Now comes the interesting part.

Of course, the world of classes and the world of objects are somehow interconnected. This interconnection is defined through a relationship between the Class Model (CM) and the Object Model (OM). This relationship determines how OD and CD are related. Objects are instances of classes, meaning that a certain class is the input to a factory, which "produces" an object, whose type property is a pointer to the class and whose values are data stores including pointers to the class attributes. That is what we call an "instanceOf" relationship. This relationship is defined by the OM/CM arrow.

The means to describe an interconnection between OM and CM is defined by the arrow between OMM and CMM. Otherwise, one could only describe self-contained models of OM and CM, but not interrelate these models, which -- in turn -- would prevent to specify the "instanceOf" relationship between OD and CD. As one can observe, the reasoning is absolutely "symmetric".

Now, let's do some grouping. Let us refer to OD as meta-level zero (M0) and to CD as meta-level one (M1). CM and OM together constitute meta-level two (M2), CMM and OMM constitute meta-level three (M3).

We are done and have come up with a completely coherent description of the meta-level architecture, which -- in principle -- could be extended by further, higher levels.

One might ask, why we have not grouped OD and CD in the very same way, as we have done it for OM and CM and for OMM and CMM, respectively. Such an argument would call for a three-level meta-architecture instead of a four-level meta-architecture. However, there is finer point in here. Of all arrows labeled with "instanceOf", there is only one arrow, whose semantics can be arbitrarily defined in the meta-level architecture: it is the arrow between OD and CD, which is in fact defined on M2. In that sense, the "instanceOf" arrow between OD and CD is of a different kind than that all the other "instanceOf" arrows -- it is of a different "quality", so to speak.

By the way, could there be reasons to introduce higher levels in the meta-level architecture, like M4, M5 etc? Yes, there could. The arrow between OMM and CMM on M3 is a necessity in order to have means to define the relationship between CM and OM in M2. If you want to define the relationship between OMM and CMM yourself, you need a higher level, which provides the infrastructure to do so. The four-level meta-architecture is the smallest number of levels needed by a modeling language designer in order to have means to specify M0, M1 and their interrelationship of instantiation. In practice, higher levels are possible but rarely needed.

Note that you will find a lot of figures in literature depicting the meta-level architecture, which are not accurate -- if not almost false. Even the UML 2.0 Standard (and previous versions of the UML Standard) is not 100% correct in its description of the meta-level architecture. Even though I said that the meta-level architecture is easy to understand, many miss to get the full picture and forget about the relation between M0 and M2.

Beliebte Posts aus diesem Blog

Lidl und der Kassen-Bug

Es gibt Fehler, im Informatiker-Jargon "Bugs", die etwas anrühriges haben. Ich bat den Menschen an der Kasse bei Lidl um einen Moment Geduld und meine Kinder um Ruhe, um nicht den wunderbaren Moment zu verpassen, bei dem es passierte. Der Lidl-Mensch fluchte kurz auf -- und ich war entzückt! "Einen Moment, davon muss ich ein Foto machen!" Und dann machte ich noch eines. Ich bin heute extra für diesen Fehler zu Lidl gepilgert -- ich wollte es mit eigenen Augen sehen. Gestern hat mir ein Student (vielen Dank Herr Breyer) von diesem Fehler in einer EMail berichtet. Ein richtig schöner Fehler, ein Klassiker geradezu. Ein Fehler, den man selten zu Gesicht bekommt, so einer mit Museumswert. Dafür wäre ich sogar noch weiter gereist als bis zum nächsten Lidl. Der Fehler tritt auf, wenn Sie an der Kasse Waren im Wert von 0 Euro (Null Euro) bezahlen. Dann streikt das System. Die kurze Einkaufsliste dazu: Geben Sie zwei Pfandflaschen zurück und Lidl steht mit 50 Cent bei Ihne

Syntax und Semantik

Was ist Syntax, was ist Semantik? Diese zwei Begriffe beschäftigen mich immer wieder, siehe zum Beispiel auch " Uniform Syntax " (23. Feb. 2007). Beide Begriffe spielen eine entscheidende Rolle bei jeder Art von maschinell-verarbeitbarer Sprache. Vom Dritten im Bunde, der Pragmatik, will ich an dieser Stelle ganz absehen. Die Syntax bezieht sich auf die Form und die Struktur von Zeichen in einer Sprache, ohne auf die Bedeutung der verwendeten Zeichen in den Formen und Strukturen einzugehen. Syntaktisch korrekte Ausdrücke werden auch als "wohlgeformt" ( well-formed ) bezeichnet. Die Semantik befasst sich mit der Bedeutung syntaktisch korrekter Zeichenfolgen einer Sprache. Im Zusammenhang mit Programmiersprachen bedeutet Semantik die Beschreibung des Verhaltens, das mit einer Interpretation (Auslegung) eines syntaktisch korrekten Ausdrucks verbunden ist. [Die obigen Begriffserläuterungen sind angelehnt an das Buch von Kenneth Slonneger und Barry L. Kurtz: Formal Syn

Factor @ Heilbronn University

It was an experiment -- and it went much better than I had imagined: I used Factor (a concatenative programming language) as the subject of study in a project week at Heilbronn University in a course called "Software Engineering of Complex Systems" (SECS). Maybe we are the first university in the world, where concatenative languages in general and Factor in specific are used and studied. Factor is the most mature concatenative programming language around. Its creator, Slava Pestov, and some few developers have done an excellent job. Why concatenative programming? Why Factor? Over the years I experimented with a lot of different languages and approaches. I ran experiments using Python, Scheme and also Prolog in my course. It turned out that I found myself mainly teaching how to program in Python, Scheme or Prolog (which still is something valuable for the students) instead of covering my main issue of concern: mastering complexity. In another approach I used XML as a tool